?

Log in

No account? Create an account
November 2016   01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
cartoon

О точных науках

Posted on 2016.06.20 at 04:35
Когда я стал постарше, я, будучи воспитанным как ученый-математик, изменил свое отношение к гуманитарным наукам.

Сначала я заметил, что мой подход к поиску доказательств теорем, и выдумыванию их формулировок, никак не укладывается и не описывается понятиями "точных наук". Они этому, самому важному, попросту не учат. Когда я это делаю - я гуманитарий. Все, что в этом есть точного - сами математики пренебрежительно называют термином "навести строгость".

Математики не разговаривают между собой формулами. Они говорят на интересном жаргоне, который оставляет всю эту строгость за скобками. Например, походя брошенное "эта функция быстро растет" - означает, что она обладает асимптотикой экспоненты. И все такое.

Владение этим арго позволяло мне сдавать экзамены на пятом курсе на раз. Освобождало от решения задач. Достаточно сказать правильным языком пару предложений о том, почему решение такое - и преподаватель сразу понимал, что перед ним свой. Никаких придирок. Никаких дополнительных вопросов. "Ваш научный руководитель хорошо вас научил, он тонкий математик".

Собственно, высшая математика от низшей и отличается владением этим профессиональным жаргоном (арго). Когда ты понимаешь, что означают эти "функция быстро растет", и умеешь этим языком говорить.

В этот момент ты становишься гуманитарием. Освобождаешься от оков "строгости". И начинаешь, наконец, познавать мир.

Математика - это неплохая тренировка ума. Но мир так интересен и разноообразен :). Его описывает не она. Искусство. Только оно способно кратко и точно донести всю правду о мире.

Comments:


pashkovdv
pashkovdv at 2016-06-20 08:41 (UTC) (Link)
А есть ли учебник, написанный на этом языке? И его раскрывающий?
alll
alll at 2016-06-20 09:34 (UTC) (Link)
Нет, конечно. Потому что "строгость" как раз для учебников и придумана. :)
Serge Shikov
Serge Shikov at 2016-06-20 16:47 (UTC) (Link)

Фейнман же

Правда это физика, но математики там тоже вполне достаточно.
alll
alll at 2016-06-20 17:17 (UTC) (Link)

Re: Фейнман же

[Мат]физика - это всё-таки немного про другое. Не просто "функция быстро (экспоненциально) или медленно (логарифмически) растёт", а "логарифм не функция, можно выносить из-под интеграла" с дельта-функцией на другой стороне медальки.
Gaperton
gaperton at 2016-06-21 21:11 (UTC) (Link)
Почему же. Есть учебники, написанные до того, как измывательства над студентами вошли в моду. Матанализ Фихтенгольца, например. Или "Теоретическая механика" Арнольда. "ТФФА" Комогорова-Фомина.

Хотя в них со "строгостью", конечно же, все в порядке. Скорее, без перегибов.

Edited at 2016-06-21 09:46 pm (UTC)
Gaperton
gaperton at 2016-06-21 21:15 (UTC) (Link)
Американские учебники должны быть хорошими. Я их правда не знаю, но у них чморение студентов никогда не было в традиции.
Gaperton
gaperton at 2016-06-21 21:25 (UTC) (Link)
А Фихтенгольц был даже запрещен на одном из потоков мехмата МГУ, с наиболее мудацким курсом матанализа из всех возможных (это, конечно же, Камынин). Я не шучу. Он ставил двойку на экзамене любому, кого подозревал в чтении Фихтенгольца. А ну как студент что-нибудь понимать начнет? Студентам приходилось это скрывать.

Я считаю, это говорит о многом. "Отличные сапоги, стало быть, надо брать".

Edited at 2016-06-21 09:26 pm (UTC)
Gaperton
gaperton at 2016-06-21 21:39 (UTC) (Link)
Чтобы научиться на этом языке говорить, надо, к сожалению, "строгость" знать и уметь. Иначе не получится.

Суть "секретного языка" в том, что люди попросту экономят время при объяснениях, опуская очевидные и всем известные вещи. При этом, они не пропускают само объяснение. Очевидно, для этого надо знать эти "очевидно" и "всем известно", чтобы не пропустить чего лишнего. Иначе у собеседника в голове картинка не сложится. И вообще, неплохо понимать, о чем ты говоришь.

Этому неявно учат на спецсеминарах, когда студент участвует в обсуждениях.

Но на экзаменах на младших курсах такое обычно не проканывает - там как раз преподавателю очень интересны эти "всем известные, и очевидные вещи". :)

Ну то есть, учебник матанализа, например, на этом языке был бы пустым. Или был бы короткой брошюркой на десяток страниц.

Edited at 2016-06-21 09:58 pm (UTC)
Gaperton
gaperton at 2016-06-21 22:06 (UTC) (Link)
Впомнил! Вы таки будете смеяться. Но конечно же, такой учебник есть!

Все книги из серии "справочная математическая библиотека".

http://review3d.ru/seriya-spravochnaya-matematicheskaya-biblioteka-29-vypuskov

Там нихрена не брошюрка. Я любил пугать людей разными редкими адовыми штуками, почерпнутыми из этих книг. Там иногда попадается что-нибудь забористое, вроде "обобщенной жордановой формы". Сейчас уже, разумеется, ничего не помню.

Edited at 2016-06-21 10:17 pm (UTC)
Тимур Василенко
timur0 at 2016-06-20 09:29 (UTC) (Link)
Вы оставляете за скобками свою возможность "навести строгость" в этих рассуждениях. Если же рассуждения настолько оторвались от этой возможности, что она перестала быть возможной, то увы, это уже не математика. Или же вы гений типа Рамануджана.
Gaperton
gaperton at 2016-06-21 21:41 (UTC) (Link)
Ничего не понял. Чувствую, в этом комментарии строгости в рассуждениях не хватает.
valeryhronusov
valeryhronusov at 2016-06-20 11:32 (UTC) (Link)
Да, когда оперируешь с решением, а не процессом, такой гуманитарный уровень и получается.
Типа квадратичность функционала существенно нарушается, поэтому для проверки результата лучше использовать что-то многосеточное или итерационное уточнение по какой-нибудь продвинутой мере.
Eugene Kirpichov
antilamer at 2016-06-20 20:10 (UTC) (Link)
См.тж.: Zen and the Art of Motorcycle Maintenance https://en.wikipedia.org/wiki/Zen_and_the_Art_of_Motorcycle_Maintenance
Previous Entry  Next Entry